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A modification to the method of characteristics(MOC)is described for solving a system 
of two first order hyperbolic partial differential equations possessing periodic solutions. 
The condition of the physical system is specified by two boundary conditions at a single 
spatial location. The system’s periodicity is incorporated into the numerical scheme to 
generate an additional set of boundary conditions at t = 0 and t = 25~ as the solution 
proceeds forward in space rather than in time as in the usual MOC. No downstream 
boundary conditions and no initial conditions are permitted. The number of computa- 
tions is minimized since only one cycle is calculated. The validity of this new approach is 
illustrated by an example from cardiovascular fluid dynamics for which the exact 
solution is known. 

INTRODUCTION 

The method of characteristics (MOC) is a powerful numerical approach to the 
solution of hyperbolic partial differential equations. Detailed mathematical dis- 
cussions of the MOC as well as applications to compressible fluid flow are covered 
in many texts [5, 6, 91. The application of the MOC to hydraulic transients is 
discussed in [13]. 

More recently the MOC has been used in the study of cardiovascular fluid 
dynamics [ 14, 7, 10, 12, 14-16, and others]. Since the pressure and velocity in 
the cardiovascular system are each a superposition of forward and reverse waves, 
they inherently contain information regarding downstream conditions, even though 
this contribution cannot be explicitly stated. An advantage of the MOC is that 
reflections from the periphery are automatically absorbed into the solution because 
of the backward-running characteristic curve at each grid point. 

In the usual procedure for applying the MOC to blood flow problems, a bound- 
ary condition, generally pressure as a function of time, is chosen at each end of 
the vessel segment under consideration, initial conditions are assumed for the 
variables, and the solution is propagated forward in time. The solution is assumed 
to be periodic. The initial transients gradually die out until the difference between 

296 
Copyright 0 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



PERIODIC METHOD OF CHARACTERISTICS 297 

two successive cycles is small enough to be neglected. The values for the last 
computed cycle then constitute the solution. 

It is more advantageous experimentally, however, if the boundary conditions 
can be specified at a single site in the vessel in order to predict the flow and pressure 
at any other point. Because a periodic solution exists for the blood flow problem, 
an approach has been developed wherein two upstream boundary conditions are 
specified. The periodicity of the solution allows a set of boundary conditions at 
t = 0 and t = 27~ to be continually generated as the solution proceeds down the 
vessel (forward in space) rather than forward in time. 

In Section 1, this new approach, termed the periodic method of characteristics 
(PMOC), is described for the case of two general hyperbolic differential equations 
possessing periodic solutions. In Section 2, the validity of the method is illustrated 
by a simple example from cardiovascular fluid dynamics for which the exact solu- 
tion is known. 

1. MOC APPLIED TO A GENERAL PERIODIC SYSTEM 

The system to be considered is described by the two quasilinear hyperbolic 
partial differential equations 

where u and u are the dependent variables, x and t are the independent variables, 
and the coefficients A, ,..., E, are known functions of the dependent and indepen- 
dent variables, e.g., A, = A,(x, t, U, v). All functions are assumed to be continuous 
and to possess as many continuous derivatives as may be required. The coefficients 
are assumed to be such that nowhere does Al/A, = Bl/Bz = CJC, = DJD, . It 
is further assumed throughout that the solutions to (1) and (2) for u and v are 
periodic in t. Although the remarks below apply for any coordinates x and t, it 
will be convenient to call x the spatial coordinate and t the temporal coordinate. 
We are thus dealing with the standard Cauchy problem for two independent 
variables, with data specified along the line x = 0, i.e., 

40, t> = u. + f u, sin(nt + &A 
n=1 

40, t> = u. + c v, Writ + +A 
iZ=l 

(3) 

(4) 
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where N is the maximum harmonic considered, U, and L’, are the magnitudes and 
+!J~ and & are the phases of the n-th harmonic. 

The solution space is illustrated in Fig. 1. The solution is sought between 

6n 

0 
L 

FIG. 1. Solution space. 

x = 0 and x = L and for all time. Because the solutions to (1) and (2) are periodic 
in t, the time can be nondimensionalized so that 2~ represents the length of the 
period in the t direction, limiting the discussion to the solutions between t = 0 
and t = 277. 

The system L, and L, is readily reduced to the equivalent total differential 
system by the method of characteristics [8, 11): 

forward: At(du/dt) + C+(dv/dt) + E+ = 0, 

backward: A-(du/dt) + C-(du/dt) + E- = 0, 

(5) 

(6) 

where A+ = A, + X+A, , A- z A, + h-A,, etc., and A, and A- are the Lagrangian 
multipliers corresponding to the forward and backward characteristic curves, 
respectively. Thus, the problem reduces to solving for the periodic solutions to 
(5) and (6) with characteristic directions of dx/dt = L+ and dxjdt = i-, respec- 
tively. 

The particular computational method developed here utilizes the method of 
specified time intervals as outlined in [8]. This method is preferred over the grid 
of characteristics method (GOCM) because of its more orderly computational 
scheme. The results are presented directly in the output format needed for plotting, 
regardless of the output location(s) selected. The GOCM demands an additional 



PERIODIC METHOD OF CHARACTERISTICS 299 

interpolation to put the output values in a useful format. However, the GOCM 
eliminates interpolations in the numerical scheme itself. Figure 2 defines the grid 
pattern used, where the lines labeled C+ and C- are the forward and backward 
characteristic curves, respectively. The grid runs from 0 to 27r in the t direction 
and from 0 to some terminal value L in the x direction as shown in Fig. 1. 

X I I 
xo Xo+A x 

FIG. 2. Grid diagram. 

The time increment is At = 2n/NT, where NTis the number of segments between 
t = 0 and t = 27-r. The distance increment is Ax = l/NX, where NXis the number 
of segments per unit distance. The constraint on the choice of Ax, given At, is 
that the characteristics must fall on the line segment a-b. With this constraint 
met, the solution exists and is unique [5, 91. Increasing the number of grid points 
increases the accuracy of this solution, but this principle is subject to the law of 
diminishing returns on invested computer time. If a larger number of grid points 
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in the t direction is chosen, thereby reducing At, the above constraint dictates that 
a smaller dx must also be chosen. Thus, computation time is proportional to the 
square of the grid points in the t direction, an important practical factor in choosing 
the value for NT. 

In the following equations, the subscripts refer to the points on the grid diagram 
of Fig. 2 where the subscripted variables are to be evaluated. The solution proce- 
dure is as follows: (I) Find t, and t, by propagating the characteristic curves from 
point q back to the line segment x,, ; (2) Determine the values of u and v at points 
r and s by interpolation of the values previously known at points a, 6, and c; 
(3) Use Eqs. (5) and (6) to give two equations for II and v. Below are listed the 
equations to be employed by this procedure. It will be noted that (9)-(12) are 
simple linear interpolations. If u and u change rapidly from node to node, qua- 
dratic or trigonometric interpolations should be used to give greater accuracy 

t, = t, - Ax/<,+, 

t,T = t, - Ax/<,--, 

ur = Ktc - Wtl ~a + [1 - Oc - Wtl u, , 
0, = Ktc - Wtl~a + [1 - (t, - t,)lAtl v, , 
us = -Ktc - t,>/Atl ub t [I -t (t, - t,Wl u, , 
us = -[(tc - t,>Pl vb -I [I + (t, - t,Wl v, , 

Ar+u, + C,+v, = A,+u, + Cr+v, + (tT - tJ E,+ = K, , 

As-u, + CJJ, = As-u, + Cs-v, + (ts - t,) Es- = KS, 

u, = (KTCs- - K,C,+)/(A,+C,- - As-C,+), 

v, = (K,A,+ - KJ-)/(A,+C,- - As-C,+). 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

A single iteration may be sufficiently accurate to define uq and v, . As a check, 
t, and t, can be recalculated using the average values of <+ between r and q and 
IZ- between s and q, respectively. If the new t, and t, fall within E At of the previous 
values, where E is a small convergence factor, then the calculations for grid point 
q can be considered complete. If not, more iterations can be performed using 
average values of the variables and coefficients between r and q, and s and q, until 
the convergence criterion is met. 

As can be seen from Fig. 2, three “old” grid points are needed to calculate u 
and v at each new point q. But at the end points of the line segment x = x, + Ax, 
only two old grid points are available. Thus, two fewer grid points can be calculated 
for each successive value of x. 

The periodicity of the solution is invoked to resolve this difficulty. As illustrated 
in Fig. 3, the calculation grid consists of NT + 2 nodes in the t direction, with 
node IT = 1 corresponding to t = 0 and IT = NT + 1 to t = 27~. The periodicity 
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condition says that the values at t = 0 and t = 25~ (or IT = 1 and IT = NT + 1) 
must be equal and that the values at IT = 2 and IT = NT + 2 must also be 
equal. Using the line segment at x = x, with NT + 2 nodes, NT nodes (from 
IT = 2 to ZT = NT + 1) are calculated at x = x, + dx. The values for IT = 1 
and IT = NT 1. 2 at x = X, + dx are set to the newly calculated values at 

T = 2n IT = NTtl 

IT = VT 

T = A\T- <IT=3 

T =AT- <T=2 

T-O +-----+-IT=1 

x6 x0 + \x 

FIG. 3. Periodicity condition. 

IT = NT + 1 and IT = 2, respectively. Thus, at each line segment x, each of 
the NT + 2 nodes can be evaluated, before proceeding to the next x position. In 
effect, the periodicity condition allows the generation of an additional set of 
boundary conditions while the computation is in progress. 

Only one cycle is calculated for each value of x. If L is the termination site, and 
NX the number of divisions between x = 0 and x = 1, then the total number of 
nodes which must be evaluated is L(NT + 2) NX. 

The formulation of the numerical scheme does not allow the specification of 
downstream boundary conditions at x = L and initial conditions at t = 0. Thus, 
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if this method is used for solving fluid flow problems, for example, the flow must 
be isentropic. Otherwise, the problem would not reduce to only two partial dif- 
ferential equations. 

2. COMPARISON WITH AN EXACT SOLUTION 

The validity of the above procedure may be illustrated by a problem in cardio- 
vascular fluid dynamics. One-dimensional analysis of blood flow in an artery can 
be simplified by eliminating the friction forces and any outflow through the vessel 
walls, neglecting the convective terms in the equation of motion, assuming the 
pulse wave speed is constant, and considering the artery to be untapered [14]. 
The two conservation equations become 

COntinUity: LqaPjat) + (au/ax) = 0, (17) 
Momentum: l&au/at> + (aP/ax) = 0, (18) 

where P = pressure, u = velocity, t = time, x = axial coordinate, and Q = o&/c 
is a nondimensional parameter where w = circular frequency of first harmonic, 
R, = mean radius, and c = pulse wave speed. All other variables in (17) and (18) 
have been nondimensionalized. These equations reduce to the classical linear wave 
equation 

(a%/axy - LP(a%L/aP) = 0, 

which has a solution given by the familiar d’Alembert formula 

(19) 

u(x, t) = ; [f(t + Q-x) + f(t - Qx>l + $ flf g(z) dz. (20) 

The functions f and g are obtained from the boundary conditions for u and P 
at x = 0: 

~(0, t) = u0 + 2 u, sin(nt + #,) =f(t), (21) 
n=1 

P(0, t) = P, + 5 P, sin(nt + &J. 
fi=l 

(22) 

To obtain g, (22) is differentiated and combined with (17): 

wo, 0 -z 
ax 

--1;2 am t) -= 
at -Q 5 P,n cos(nt + &) = g(t). (23) 

?Z=l 

An analogous solution, of course, can be written for the pressure P. 
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The system of equations given by (17) and (18) was programmed by the proce- 
dure outlined in the previous section and compared with the exact solutions for u 
and P given by (20)-(23) and their counterpart for P. For input conditions at 
x = 0, pressure and velocity data from the aorta of a healthy dog was used. The 
parameters of interest are N = 10, E = 0.001, R, = 0.945 cm, c = 650 cm/set, 
and w = 16.23 rad/sec. A single iteration at each node gave the accuracy specified 
by E. Figure 4 shows the comparison of the new numerical method with the exact 

---~---..- 

i- 

A 
7 

*--, 

FIG. 4. Aortic waveform development comparison of numerical and exact solution with 
NT = 500 and NX = 10. 

solution at an axial location of 15 radii from the input site. The pressure and veloc- 
ity as calculated by the PMOC are lowered by 10 mm Hg or 10 cm/set, respectively, 
from the linear curves, for readability. The PMOC used the grid parameters of 
NT = 500 and NX = 10. As can be seen, the numerical method compares quite 
favorably with the exact solution. Reducing NT to 100 and NX to 2 introduces 
discrepancies of about 5 cm/set in the velocity curve preceding the rise and again 
at peak velocity as shown in Fig. 5; the pressure wave appears relatively unaffected 
by the change in grid size. Central processor time on the Control Data 6400 Com- 
puter was 4 set for the case with NT = 100 and 6 set for NT = 500. 
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This problem is presented only to illustrate the validity of the PMOC. The 
problems of real interest in cardiovascular dynamics involve all the nonlinearities 
that were neglected in setting up (17) and (18), e.g., taper, friction, and convection. 
The need for accurate experimental data used for input values at x = 0 is obvious. 

ITIrE IN MU.11 OF 2 PI) 

FIG. 5. Aortic waveform development comparison of numerical and exact solution with 
NT = 100 and NX == 2. 

CONCLUSIONS 

A modification to the method of characteristics makes it possible to find the 
complete solution to a periodic system described by two hyperbolic partial differ- 
ential equations from knowledge of the condition of the system for a single cycle 
at a single physical point. The modification permits no downstream boundary 
conditions at x = L and no initial conditions at t = 0. This new periodic method 
of characteristics is computationally efficient since only one cycle must be cal- 
culated. 
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